Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Physiol ; 13: 1068824, 2022.
Article in English | MEDLINE | ID: covidwho-2240652

ABSTRACT

Purpose: Under the influence of COVID-19 and the in-hospital cost, the in-home detection of cardiovascular disease with smart sensing devices is becoming more popular recently. In the presence of the qualified signals, ballistocardiography (BCG) can not only reflect the cardiac mechanical movements, but also detect the HF in a non-contact manner. However, for the potential HF patients, the additional quality assessment with ECG-aided requires more procedures and brings the inconvenience to their in-home HF diagnosis. To enable the HF detection in many real applications, we proposed a machine learning-aided scheme for the HF detection in this paper, where the BCG signals recorded from the force sensor were employed without the heartbeat location, and the respiratory effort signals separated from force sensors provided more HF features due to the connection between the heart and the lung systems. Finally, the effectiveness of the proposed HF detection scheme was verified in comparative experiments. Methods: First, a piezoelectric sensor was used to record a signal sequences of the two-dimensional vital sign, which includes the BCG and the respiratory effort. Then, the linear and the non-linear features w.r.t. BCG and respiratory effort signals were extracted to serve the HF detection. Finally, the improved HF detection performance was verified through the LOO and the LOSO cross-validation settings with different machine learning classifiers. Results: The proposed machine learning-aided scheme achieved the robust performance in the HF detection by using 4 different classifiers, and yielded an accuracy of 94.97% and 87.00% in the LOO and the LOSO experiments, respectively. In addition, experimental results demonstrated that the designed respiratory and cardiopulmonary features are beneficial to the HF detection (LVEF ≤ 49 % ). Conclusion: This study proposed a machine learning-aided HF diagnostic scheme. Experimental results demonstrated that the proposed scheme can fully exploit the relationship between the heart and the lung systems to potentially improve the in-home HF detection performance by using both the BCG, the respiratory and the cardiopulmonary-related features.

2.
Frontiers in physiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2229938

ABSTRACT

Purpose: Under the influence of COVID-19 and the in-hospital cost, the in-home detection of cardiovascular disease with smart sensing devices is becoming more popular recently. In the presence of the qualified signals, ballistocardiography (BCG) can not only reflect the cardiac mechanical movements, but also detect the HF in a non-contact manner. However, for the potential HF patients, the additional quality assessment with ECG-aided requires more procedures and brings the inconvenience to their in-home HF diagnosis. To enable the HF detection in many real applications, we proposed a machine learning-aided scheme for the HF detection in this paper, where the BCG signals recorded from the force sensor were employed without the heartbeat location, and the respiratory effort signals separated from force sensors provided more HF features due to the connection between the heart and the lung systems. Finally, the effectiveness of the proposed HF detection scheme was verified in comparative experiments. Methods: First, a piezoelectric sensor was used to record a signal sequences of the two-dimensional vital sign, which includes the BCG and the respiratory effort. Then, the linear and the non-linear features w.r.t. BCG and respiratory effort signals were extracted to serve the HF detection. Finally, the improved HF detection performance was verified through the LOO and the LOSO cross-validation settings with different machine learning classifiers. Results: The proposed machine learning-aided scheme achieved the robust performance in the HF detection by using 4 different classifiers, and yielded an accuracy of 94.97% and 87.00% in the LOO and the LOSO experiments, respectively. In addition, experimental results demonstrated that the designed respiratory and cardiopulmonary features are beneficial to the HF detection (LVEF Conclusion: This study proposed a machine learning-aided HF diagnostic scheme. Experimental results demonstrated that the proposed scheme can fully exploit the relationship between the heart and the lung systems to potentially improve the in-home HF detection performance by using both the BCG, the respiratory and the cardiopulmonary-related features.

3.
Biomedicines ; 10(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099340

ABSTRACT

(Background) The coronavirus disease 2019 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries high infectivity and mortality. Efficient intervention strategies are urgently needed. Avian immunoglobulin Y (IgY) showed efficacy against viral infection whereas the in vivo efficacy remains unclear. (Methods) We immunized laying hens with S1, S1 receptor-binding domain (S1-RBD), or S2 subunits of the SARS-CoV-2 spike (S) protein. After immunization, IgYs were collected and extracted from the egg yolks. The neutralization potential of IgYs was examined by the plaque reduction neutralization test (PRNT). The bioutility of IgYs was examined in Syrian hamsters in vivo. (Results) IgYs exhibited typical banding patterns in SDS-PAGE and Western blot and were immunoreactive against S1, S1-RBD, and S2 subunits. The plaque reduction neutralization test (PRNT) showed that all purified IgYs potently neutralized different SARS-CoV-2 strains in vitro. In Syrian hamsters, the combination of IgYs for S1-RBD and S2 subunits administered before or after SARS-CoV-2 infection effectively restored body weight loss and reduced intrapulmonary lesions and the amount of immunoreactive N protein-positive cells, which were caused by SARS-CoV-2 infection. (Conclusions) Collectively, IgYs specific for S protein subunits effectively neutralized SARS-CoV-2 in vitro and in vivo and may serve as prophylactic or therapeutic antibodies in the prevention or treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL